
Auckland ICT Graduate School

Internship Final Report

31/10/2022

CSMAX596-22B - Computer Science Internship

Student: Nicholas Jones

Supervisor: Jessica Turner

Internship Host: Radford Software Ltd

Industry Mentor: David Draffin



Declaration of Originality

This report is my own unaided work and was not copied from nor written in collaboration
with any other person.

Name: Nicholas Jones



Abstract—In recent years many enterprise software systems
have shifted away from monolithic and towards microservice
based architecture for the benefits that it can provide larger
software systems. The API Gateway can be seen as an essential
component of microservice architecture. This academic report
documents the process, methodology and result of a project
described by Radford Software Ltd that aims to incorporate some
aspects of microservice based architecture. The internship project
has provided an opportunity to work on a real-world problem, in
an industry setting. The learning and reflection of this experience
is provided within the discussion section of this report. The
project results section outlines the deliverables that were achieved
during the internship. It is hoped that the work completed during
the internship will be of use to Radford Software Ltd and provide
valuable insight that aids in the integration of a software solution
in the future.

I. INTRODUCTION

The Master of Information Technology (MInfoTech) pro-
gramme was developed as part of the Auckland Information
and Communications Technology (ICT) Graduate School, a
collaborative effort between the University of Waikato and the
University of Auckland to train industry-ready ICT profes-
sionals. The goal of the programme is to meet the growing
demand for highly skilled network and data professionals,
programmers, system architects, web developers, amongst
others.

The main component of the programme is the industry
internship paper which provides full-time industry experience
for ten weeks with the host organisation. During the internship,
the intern is mentored and supported by the host organisation
and a University supervisor as the work for a real-world
problem is achieved in an industry team setting [1].

This report is the result of the internship experience for
the intern at Radford Software Limited (Radfords). The re-
port covers a comprehensive outline of what was achieved,
including the deliverables and the internship experience as a
whole.

In Section II of this report the company background and
the work environment are described. The background section
provides the company history and information about Radfords.
The work environment describes how the Agile methodology
is incorporated into Radfords business practices. The work
environment is further elaborated through discussing the com-
pany values and Radfords mission statement.

In Section III the analysis of the internship project is
outlined and includes the process taken to fully describe how
the project goals and project objectives are realised. This
process includes requirements gathering, where meetings with
the Radfords team take place, which leads next to an analysis
of software architecture. A review of the technology stack
leads into the development of a series of prototypes used to
further understand some of the functions and programming
needed for the project. Lastly for this section, research into
software architecture patterns is conducted, which provides a
basis for the the architecture to follow while developing the
internship project.

The project goals are introduced in Section IV. These are
defined by bringing together the findings from the project

analysis in section III. The description of the project goals
also includes the technical specifications of the technologies
that will be used for the internship project.

Section V describes the project objectives for the internship
project. The objectives describe the purpose of the software
solutions and more detail is supplied for the Application
Programming Interface (API) communications, including the
endpoints that need to be developed to provide the function-
ality.

Section VI provides information around the project mile-
stones including project management software and methodol-
ogy for project management. A breakdown of tasks undertaken
is supplied through a timeline.

The literature review provided in Section VII describes
research and findings relevant to the development cycles of
the internship project. The literature review starts by looking
at the latest trends in the software industry to move towards
cloud computing and microservice architecture solutions. Next
the API Gateway architecture is described and the benefits
associated with having an API Gateway are discussed. His-
tory and terminology of the REpresentational State Transfer
(REST) API is provided which describes the REST request
and response structure.

Section VIII provides the project results and deliverables
for the internship project. These results include the Data
Flow Diagram used to describe the system and a description
of the functionality of the work completed, along with an
overview of the three solutions developed; the API Gateway,
the Hardware Integration API and the Transmission Control
Protocol/Internet Protocol (TCP/IP) listener.

The API Gateway solution is described in Section IX. This
section includes what was achieved during the development
cycles for the API Gateway. A detailed look at how the reverse
proxy functionality is implemented occurs within this section
and how the reverse proxy can be configured programmatically
and through an external configuration file.

Section X describes the Hardware Integration API solution
which discusses the technical aspects of the functionality. A
description of the source code files is supplied with informa-
tion about the function of each of the source files.

Section XI describes the TCP/IP listener solution for the
internship project and how this component fits into and its
function with the other components of the solution.

The discussion in Section XII covers what further work is
required of the next development cycles. Lessons that have
been learnt and reflection is provided in this section along
with examples of knowledge and skills that have been acquired
through undertaking the internship project. The professional
attributes are also discussed in this section which provide a few
examples of how the attributes discussed have been applied for
the duration of the internship project.

II. COMPANY

A. Background

Radfords started thirty-two years ago when Phil Radford
began collaborating with kiwifruit pack-houses in the Bay of

1



Plenty. Today the business has grown to over fifty passionate
staff, supporting multiple fresh food clients in over seven
countries across seven time zones - including New Zealand,
Australia, France, Italy, Japan, Korea and USA. Radfords mis-
sion statement is: To enable our customers to grow the world’s
food basket which helps meet the global consumer demands by
providing effective, professional software solutions that gives
complete control – from soil to supermarket for fresh produce
inventory management and traceability software.

B. Work Environment

Radfords operate from a head office in Tauranga, which
provides a combination of open plan workspace and sep-
arate offices. The organisation hierarchy arranges the staff
into teams relating to different strategic goals. The software
development teams are divided into areas of focus such as the
kiwifruit team, the apples team and the multi team (Maha),
which is focused on a variety of different produce.

Radfords operate with an agile approach through their
wider business, this brings more clarity between project teams
with clearer communication and collaboration. The Agile
methodology at Radfords is based around the Agile Manifesto
of Software Development, which was formally launched in
2001 [2]. The four core values of Agile software development
include:

• Individuals and interactions over processes and tools;
• Working software over comprehensive documentation;
• Customer collaboration over contract negotiation; and.
• Responding to change over following a plan.
The Agile core values are incorporated at Radfords through

business practices such as:
• Daily Stand-up Meetings.
• Sprint reviews.
• Weekly developers catch-ups.
• Kanban board and project management software.
Radfords offers a flexible working environment which fol-

lows a hybrid working from home model if this option is
the preference. At Radfords it is encouraged to come to the
office on Mondays and Fridays to help facilitate communi-
cation within the company. Radfords have a strong culture
of inclusion with the value statement Team Rad. We win as
a Team. In addition to this value statement, Radfords values
also include:

• Respect, Integrity and Commitment.
• Simplicity.
• Being Passionate.
• Having Fun.

III. PROJECT ANALYSIS

The initial description for the project details were supplied
by Radfords (Appendix C). The project description provided
was used as a baseline for understanding the project, it was
only with a thorough evaluation that included requirements
gathering, an analysis of the current system, technology stack
consideration and research into architecture patterns that the

understanding of the project goals and objectives could be
described in Section IV and Section V.

A. Requirements Gathering

An initial discussion with the industry mentor was held.
From this initial discussion it was understood that the real-life
use case for this project would be to perform communications
between third-party hardware, this would include the robotic
graders (Appendix D) that sort the produce in a pack-house
and communications between the Radfords software.

The network communication will be achieved with Hy-
perText Transfer Protocol (HTTP) by building a REST API.
The purpose of this communication is to provide a way to
supply information required to print out pack labels through
the printers. The labels are either required to be printed directly
from the Radfords software or alternatively back through the
API to the grader to be printed at the hardware end.

A second internal meeting was held during the first week
of the internship, with a second development team here at
Radfords. At this meeting a developer demonstrated how he
designed a similar API integration that communicates with
graders for their specific use case. The solution that the team
had come up with was through a TCP connection using
sockets. This was later found to be a necessary component
for the Radfords Hardware Integration API and was included
as an additional feature to be implemented in the Radfords
Hardware Integration API project.

B. Analysis of Current Software Architecture

The Radfords software suite would best fit being described
as a monolithic architecture system, rather than a more modern
microservices architecture. Due to the code-base being quite
mature the feature set has evolved over time and currently the
core and majority of the system is built with legacy code using
VB.NET.

As per the project description, historically API integrations
have been added on an ad-hoc basis and as such have more
flexibility around the development language and framework.
The Radfords Core library code-base known as Radfords.Core
is built on the .NET Framework and has the option of being
used with other programming languages that support the .NET
Framework.

Radfords.Core supports the older .NET 4.7.2 Framework
(but not yet .NET Core or later implementations such as .NET
6). From the framework support it is possible to build the
Hardware Integration API on the software side through a more
modern programming language such as C# targeting the .NET
4.7.2 Framework.

The API to provide the common endpoint functionality does
not require the use of any Radfords libraries, and from this
it is possible to build on a later and more modern Microsoft
framework, such as .NET 6.

C. Technology Stack Considerations

It is important to have a understanding of the technology
stack for the Radfords Hardware Integration API Project. To

2



achieve this a series of tasks were carried out to prototype
some of the functions that will be needed for programming
the software solutions. These tasks included:

• Debugging. Which was used by observing the data flow
of the Create, Read, Update and Delete (CRUD) oper-
ations within the Radfords Software. This was achieved
by setting breakpoints within the Integrated Development
Environment (IDE) and watching the results through the
running software. The purpose of this task was to gain
some understanding of the business logic within the
Radfords Software and how data is stored within the
Structured Query Language (SQL) database.

• A prototype API referred to as DevRadAPI was built
that used the Microsoft Entity framework software library.
This gave understanding of how database connectivity can
be achieved, but more importantly how it can be used to
store data for later development purposes, as each request
can be stored as a record in a SQL database table.

• An API client using Windows Forms (WinForms) was
built. This application has similar functionality to other
API testing tools such as Postman, and was built as
a refresher into building a WinForms application and
a client that can be used to send POST requests and
responses asynchronously. This tool proved useful for de-
velopment later to load test the network communications.
The asynchronous functionality was particularly useful
as this feature is not supported in a testing tool such as
Postman.

D. Software Architecture Patterns

Research into software architecture patterns was conducted
through web searches. It was found that the requirements
discussed for the internship project fall very closely within
the API Gateway architecture. An API Gateway provides a
single-entry into a system and can act as a reverse proxy to
provide common endpoint functionality. The architecture and
concept for an API Gateway was suggested to the industry
mentor, and it was agreed that this is a good architecture to
work towards following. The API Gateway architecture pattern
is described in more detail in Section VII.

IV. PROJECT GOALS

The primary goal of the project is to develop an API
Gateway that can provide a single point of entry into the
system. The API Gateway will achieve this by using reverse
proxy functionality that will give common communication
endpoints for the hardware API integration. The API Gateway
will have the ability to have the endpoints and routes defined
through an external eXtensible Markup Language (XML) file,
which can be modified as needed.

The hardware API integration for the Radfords software is
achieved through a REST API that provides networking with
the HTTP protocol. The data will be provided by sending and
receiving JavaScript Object Notation (JSON) that will allow
for the communication between graders and the Radfords
software services such as FreshPackMulti software.

The grader hardware requires the ability to send and receive
data streams through a TCP/IP connection. To allow this
functionality, a separate TCP/IP listener has been created that
will interface with the API Gateway.

V. PROJECT OBJECTIVES

The objective of the API communications for the Radfords
Hardware Integration API is to allow for the printing of labels
that will be printed at either the FreshPackMulti software
side, or by passing back through to the hardware grader. The
communication for label printing at the FreshPackMulti side is
known as a printlabelrequest. The communication for printing
at the grader hardware side is known as a labelrequest.

The project will be developed with scalability as a consid-
eration, as it should be flexible enough to be modified to take
onboard additional hardware or software features in the future.
The API Gateway can be expanded to take onboard such things
as the addition of middleware, for example authentication
services, or load balancing requirements.

VI. PROJECT MILESTONES

Milestones were supplied through the issue tracking and
team collaboration software, Jira. Jira provides tools to work
together with an agile and project management approach
including tools such as Kanban boards with cards known
as issues that can be assigned to an assignee. Through the
duration of the project several of these issues were assigned for
the internship project. These issues provide smaller targets to
achieve within the full scope of the project. A project timeline
is included (Appendix A) with a detailed break down of the
tasks involved in the internship project.

VII. LITERATURE REVIEW

In recent years there has been a shift in the software
engineering community towards cloud computing. Many large
companies including such companies as Amazon, Microsoft,
and International Business Machines Corporation (IBM) are
now embracing cloud platforms as the preferred delivery and
operating model for modern applications [3]. This shift and
the infrastructural changes that occur as a result has lead to
architectural styles that better take advantage of the benefits
obtained with cloud computing. Microservice Architecture
(MSA) is one such technique that has been utilised for this
purpose. Where MSA is gaining traction as a new program-
ming paradigm for the benefits it can include many systems
are still maintained as Monolithic Architecture (MA). MA was
the traditional approach to software development used in the
past by companies such as Amazon and Ebay. With MA the
functions are encapsulated into a single application.

The prevalence of many systems still using MA has lead to
academic research into methods that can be used to extract mi-
croservices from within MA. One such example is a research
paper Towards a Technique for Extracting Microservices from
Monolithic Enterprise Systems [4].

The Radfords internship project not only required research
into software architecture but also research for the RESTful

3



web API. The REST API paradigm is explored deeper in this
literature review and a detailed analysis of how a REST API
functions is explored.

A. Monolithic architecture

In a monolithic architecture, all functionality is encapsulated
into one single application, so the modules cannot be executed
independently. This type of architecture is tightly-coupled, and
all the logic for handling a request runs in a single process.
This allows for the basic features of the language to divide up
the application into classes, functions, and namespaces [5].

B. Microservice architecture

Microservice architecture is made up of a collection of
services that may be deployed separately, are tiny, modu-
lar, and compassable (composable). Every service operates
a distinct process and communicates through a well-defined,
lightweight mechanism to serve a business goal. It aligns with
the business to deal with changes in an agile manner, matches
business changes with agile responses, and delivers solutions
decentralised. The API gateway and other elements, in addition
to modular services, are essential components of microservice
architecture [6].

C. API Gateway

1) Single Entry Point: The API Gateway is essentially a
reverse proxy for microservices that serves as a single point
of entry into the system as shown in Fig 1. It significantly
simplifies and improves the processes of API design, imple-
mentation, and management. The API Gateway helps address
some of the key concerns, including:

• How to deal with features such as security, throttling,
caching and monitoring at one place.

• How to avoid chatty communication between clients and
microservices.

• How to satisfy the needs of heterogeneous clients.
• How to route requests to backend microservices.
• How to discover working microservice instances.
• How to discover when a microservice instance is not

running.

2) Transformation: On the front end, microservices fre-
quently have to deal with various clients. They have different
requirements in terms of protocol (Simple Object Access
Protocol (SOAP), REST, JSON and XML) and data. Backend
services may understand different protocols as you transition
from monolith to microservices (SOAP, REST, Advanced
Message Queuing Protocol (AMQP) etc).

The API Gateway serves as a data transformation hub,
allowing messages to be translated between backend, API, and
app formats and protocols. The gateway serves as a central
data transformation point for all traffic, translating it for:

• Requested payload transformations.
• Header transformations.
• Protocol transformations.

Fig. 1. Diagram demonstrating the single point of entry with an API Gateway.

3) Monitoring: Because the API Gateway is a single point
of entry into the system, all traffic in and out of the system
passes through it, so monitoring the gateway is critical. This
allows for the capture of data flow information, which becomes
an input for IT administration and IT policies.

4) Load Balancing and Scaling: The analysis of traffic and
data aids in understanding and estimating the load on the
system. As a result, the gateway and underlying services can
be scaled appropriately. The gateway can scale horizontally as
well as vertically. Load balancing an API Gateway uses the
same configuration to virtualize the same APIs and executes
the same policies. Load balancing should be done across
groups if multiple API Gateway groups are deployed.

D. RESTful web API

REST is an abbreviation for Representational State Transfer,
an architectural style for developing web services that com-
municate using the HTTP protocol. An example of commu-
nication using REST is shown in Fig 2. The principles of
REST were developed by computer scientist Roy Fielding
in 2000 and quickly gained popularity as a scalable and
flexible alternative to older methods of machine-to-machine
communication. It is still considered the gold standard for
public APIs [7].

The key elements of the REST API paradigm are:
• A client or software that runs on a user’s computer or

hardware and initiates communication;
• A server that offers an API as a means of access to its

data or features; and

4



Fig. 2. Demonstrates the data flow, from client to server through an HTTP
POST request and responses.

• A resource, which is any piece of content that the server
can provide to the client (for example, a video or a JSON
file).

1) REST request structure: Any REST request includes
four essential parts: an HTTP method, an endpoint, headers,
and a body. An HTTP method describes what is to be done
with a resource. There are four basic methods also named
CRUD operations:

• POST to Create a resource.
• GET to Retrieve a resource.
• PUT to Update a resource.
• DELETE to Delete a resource.
An endpoint contains a Uniform Resource Identifier (URI)

which identifies where and how to find a resource on the
Internet. A Unique Resource Location (URL), which serves
as a complete web address, is the most common type of URI.

Headers contain information that is relevant to both the
client and the server. Headers primarily provide authentication
data, such as an API key, the name or Internet Protocol (IP)
address of the computer on which the server is installed, and
response format information.

A body is used to send additional data to the server. For
example, you might want to add or replace some data.

2) REST response structure: In response, the server sends
its representation — a machine-readable description of the
resource’s current state — rather than the requested resource
itself. The same resource can be represented in a variety of
formats, the most common of which are XML and JSON.

When appropriate, a server includes hyperlinks or hyperme-
dia in the response that links to other related resources. In this
manner, the server instructs the client on what to do next and
what additional requests it may make.

E. Initial Findings

The initial findings included:
• API Gateway architecture is a good software engineering

approach to follow to achieve the common endpoint
functionality.

• The API Gateway can be built using a newer .NET
Framework (such as .NET 6) as there are no requirements
needed to use the Radfords software libraries for it.

• The Hardware API which provides integration within the
Radfords Software System needs to be integrated within

the current codebase and needs to be able to use the
Radfords software libraries. The Hardware API must be
built using the older .NET Framework version 4.7.2.

• Techniques exist that can help in the transition between
monolithic and microservice architecture.

VIII. PROJECT RESULTS

A. Data Flow Diagram

The development of a Data Flow Diagram (Appendix B)
was produced as a way to gain a high level overview of
the components for the software solution. The diagram was
produced as a way to visualise how the different components
interact within the full system.

B. Overview of Work Completed

• API Gateway. Development of a functional REST API
Gateway that provides reverse proxy and route controllers
for three specified endpoints:

– Print Label Request. The endpoint that receives a
POST request in the JSON format and initiates the
print sequence for a pack label through the Radfords
Software.

– Label Request. The endpoint that receives a POST
request in the JSON format and returns a created
pack label as a JSON response.

– Istari Label Request. The endpoint that receives a
UTF-8 text string and returns a JSON response.

• Hardware Integration API. Development of a func-
tional API integration within the Radfords software that
receives HTTP communications from the API Gateway.

• TCP/IP listener. Development of a TCP/IP listener that
allows sending and receiving of data streams in the UTF-
8 format for the purpose of communications back to the
connected client.

IX. API GATEWAY

The development of the API Gateway started as a C#
.NET Web API project targeting the .NET 5 Framework.
This was later updated to target the .NET 6 Framework. The
development of the API Gateway went through three distinct
development cycles.

• The first cycle produced the Web API and reverse proxy
with the Yet Another Reverse Proxy (YARP) nuget pack-
age.

• The second cycle added support for XML file configura-
tions and the controller to receive the label response.

• The third cycle added support for the istari label request
controller, and logging with the log4net nuget package.

1) Reverse Proxy Consideration: Research into reverse
proxies for an API Gateway was conducted and it was found
two open-source packages that remain popular choices for
developing an reverse proxy with .NET. Ocelot and YARP
were both considered candidates for the solution. Ocelot is
a more mature package and feature rich. Ocelot is currently
quite popular and provides a large feature set for use with
larger scale microservices.

5



YARP began as an open-source reverse proxy that has re-
cently started being maintained by Microsoft and has become
the official reverse proxy from Microsoft. YARP has had more
git commits on Github and active development over the last
year, while development for Ocelot appears less frequently.
YARP has recently released a version 1 of the software and is
now out of beta development. From the Research findings it
was decided that YARP would be a better fit for Radfords for
the purpose of this project. The documentation provided by
YARP and a tutorial guide were followed for how to set-up a
YARP install [8].

2) Code-based proxy configuration: After demonstrating
the first development of the API Gateway to the industry
mentor, the ability to configure the routes through an external
XML file was requested. The tutorial by Fabian Zankl [9],
was followed which demonstrates how proxy configurations
can be configured to be loaded programmatically. The class
that manages this CustomProxyConfigProvider.cs was mod-
ified to then read the routes from an XML file. The Sys-
tem.Xml.Serialization library was used to create a object that
can be used as a reference to the XML file.

Fig. 3. An example of the XML config file.

3) XML Structure: The XML config file is shown in Fig
3. Each of the endpoints are defined through the route. The
<Path> element defines the incoming route which is then set
through the <DestinationID>.

4) Istari Label Request Controller: The ability for the API
Gateway to receive HTTP POST requests in the text/plain
format was required to be added as a feature. The guide by
Peter Rasmussen [10], was followed as an example on how
to set up a custom formatter to allow this. Next a controller
for the IstariLabelRequest endpoint was created that can be
used to receive HTTP requests in the Istari native format.
The controller manages the request and will return a JSON
response furnished with the created pack label request.

5) Apache log4net: Log4net provides the ability to output
log statements to text files. Radfords have used error logging
with log4net in the past. Based on consistency the decision
for using this package was continued to the API Gateway and
other solutions for the Radfords Hardware API Integration.

X. HARDWARE INTEGRATION API
The hardware integration API resides within the FreshPack-

MultiProduceSolution and has been created as a C# ASP.NET
Web Application using the .NET 4.7.2 Framework. The Hard-
ware API contains a CommunicationController.cs class which
receives HTTP requests and responses. The development cycle
involved forming a connection with the database and bringing
through the application system arguments (SysArgs) to then
create the requested pack label with the HTTP POST request.
This was done through the CommunicationController.cs. A
LabelRequestHelper.cs class was created as a way to abstract
out the business logic from within the controller class. The
LabelRequestHelper.cs contains the two methods, CreatePack
and PrintPackLabel. The CreatePack method creates a pack
and brings through the data to form a PackLabel. The PackLa-
bel is uses as the POST response, which is sent back as JSON
data. Alternatively it is possible to call the PrintPackLabel
Method which initiates the printing of the Pack Label.

XI. TCP/IP LISTENER

The hardware graders require the ability to communicate
through TCP/IP. To achieve this functionality a new project
was created, the TCP/IP listener. The TCP/IP listener acts as
a server to receive data streams from the connected client. A
TCP client that had been developed in-house previously was
used to simulate the data stream from the hardware grader. The
TCP listener was created as a WinForms Application. The TCP
listener receives and processes the data by sending an HTTP
POST to the API Gateway. The API Gateway then manages
the request and routes it to the Hardware API. The response
returned is processed by the TCP listener and returned back
as a data stream by TCP.

XII. DISCUSSION

A. Further Work

At this point in the software development cycle the infras-
tructure and main communications for the API integration have
been developed. This includes the three primary communica-
tion solutions, the TCP/IP listener, the API Gateway and the
Hardware API within the FreshPackMulti Software.

As the software has been developed through Agile principles
further development cycles are required during the software
testing phase. Only basic testing to check functionality has
been completed at this point, and the project requires more
vigorous testing before being put into production. While
testing has been completed using a software client that simu-
lates the Tomra hardware communications, the testing should
also include an implementation through connection with real
hardware, before being deployed.

The three endpoints to communicate data flow developed
include the LabelRequest, PrintLabelRequest and the Istari-
LabelRequest. These have been the three endpoints specified
to be developed for the internship project. The API Gateway
itself has been developed as a solution with expansion in mind,
and it is possible to extend the endpoints to include different
use cases and communications for multiple purposes.

6



B. Lessons Learnt

Being able to reflect on work undertaken is a valuable skill
for self-improvement. For the duration of the internship project
many opportunities arose that allowed for reflection. Some of
the lessons that have been learnt throughout the project are
described below:

C. Knowledge and Skills Acquired

The importance of note-taking. University students nowa-
days are provided with excellent technology for the communi-
cation age. Technology platforms such as Moodle and Panopto
provide access to lecture slides and video / audio recordings of
lectures given. During an on-site internship less information is
recorded for access at a later time. During the first week this
different learning environment provided a learning opportunity
to adapt to this new environment. After the first couple of days
on-site, it was quite apparent that the skill of old-fashioned
note taking would be a good skill to improve on. The adaption
involved a much more detailed recording of notes taken both
by hand in a written journal and through digitally recording
the work undertaken through study notes.

Agile Methodology in practice. Students are taught the
theory and methodology about Agile principles. Being onsite
however is an excellent opportunity to view first hand how
Agile is put into place in a real-world situation. Situational
learning such as this provide a way to gain a more practical
approach to what Agile means. The lesson learnt here is that
some things are best to be understood and learnt academically
while other things require situational or experience to learn
fully.

Embrace changing requirements. Expanding further on the
point around Agile methodology is the importance of being
able to embrace and welcome changing requirements. The
development of a TCP/IP listener was not described in the ini-
tial internship project and was not included in the preliminary
study involved before the internship began. This however was
taken as a positive learning opportunity of Agile in practice,
as requirements are not always known or understood fully at
the beginning of a software development project.

D. Professional Attributes

Being a successful IT Professional requires application of
skills and knowledge. Professional Attributes are the appli-
cation of soft skills, such as effective communication skills,
attitude and reliability. The internship at Radfords provided
an excellent environment to put into practice development of
Professional Attributes. Some examples of how professional
attributes have been applied during the internship are listed
below:

1) Effective Communication: Being able to communicate
effectively is important to being a successful IT Professional.
The internship at Radfords provides an excellent platform to
keep building and improving communication skills. Commu-
nication skills can include verbal communication as a way to

convey information effectively and also non-verbal communi-
cation, such as body language, dress code and attitude towards
others.

Verbal communication is practiced on a daily basis, an
example can be described by the Agile stand-up meetings. It is
important to be able to present to the team up-to-date progress
on the project in an informative and accurate manner. Verbal
communication skills are also practiced every week after 4pm
on Fridays as the staff often finish early and this provides
a good opportunity to practice wider communication with a
wider range of professionals.

Non-verbal communication is practiced through a smart and
tidy dress-style. An effort is made to wear clean and smart
long sleeve shirts and present myself as an open and friendly
attitude by smiling and acknowledging staff, especially when
arriving and leaving the office for the day.

2) Attendance: Having a desk allocated during the intern-
ship on-site provides an excellent work-space to keep a 100%
attendance at the office. The benefit of being able to work on-
site provides close proximity to colleagues and staff should any
assistance be required. In addition to making sure to have great
attendance, being punctual and arriving to work ten minutes
before being due to start gives an opportunity to prepare and
develop reliability, with the computer booted up and ready to
go.

3) Ethics: A focus on ethical behaviour during the in-
ternship is important. The internship project provides a large
amount of freedom and autonomy to work and study without
strong supervision or management. It is important to remain
focused on the task at hand and not become distracted. An
example of how ethics has been applied can be seen through
making sure to treat the computer as a tool to achieve the
work and not getting distracted with personal browsing or
other computer usage during work time. A high level of
responsibility has been given by providing administration level
access to the computer system. It is important to respect
this responsibility and only install software that benefits the
company and the internship project. An ethical approach is
taken to the programming style, making sure not to take any
shortcuts or produce bad code that could become a problem
in the future.

Ethics is also shown through always working to the best
ability. To be honest and open about lack of knowledge
in an area and to make an effort to continuously develop
skills through learning and practice. Ethical considerations to
other people is important. Treating people fairly, and equally
regardless of race, gender or hold any discrimination towards
others.

4) Dependability: Dependability can be seen as the quality
of being trustworthy and reliable. To be dependable is to
always work at your best ability. To have a focus and interest
in achieving results that have been set. Dependability has been
shown by achieving the milestones and task assigned within
the acceptable time frame. Dependability is also important by
attending meetings on time and to make sure that the break-

7



time such as lunch is taken at the appropriate time and making
sure it is not any longer than it should be.

E. Project development processes

The internship project follows processes and methodology
structured in a way that can be seen to follow the System
Development Life Cycle (SDLC). The stages of the SDLC
include Analysis, Design, Implementation, Maintenance, Plan-
ning and are cyclic in nature, providing continuous develop-
ment. During the internship project, to work towards achieving
a successful outcome, application of system development is
used for the project. Described below are the first three phases
of the SDLC and how they relate to the work achieved on the
internship project.

1) Analysis: During the beginning of a project it is impor-
tant to work towards a clear understanding of how and what
needs to be done to achieve success. During the internship
project this involved getting a clear understanding of the
technology stack used, an understanding of company values
and an analysis of the scope of the project through research
and requirements gathering. The requirements gathering were
achieved through meetings with staff and research into the
packhouse machinery graders that will be interfacing with the
Radfords Software. Once an understanding of the scope of
the project, an analysis of systems and technologies to work
with can begin. This included understanding and learning the
technology stack, getting familiar with the codebase, databases
and other information systems used in the project.

2) Design: During the design phase, research was under-
taken that included software engineering considerations. It was
found that there existed similar software solutions such as
API Gateway architecture pattern that fit the requirements of
the project. Conversation was had with key stakeholders to
gain approval and make sure the overall programming design
should follow these guidelines. In addition to the architecture,
prototyping and programming smaller tasks were fleshed out
as proof-of-concepts. These were demonstrated to stakeholders
for feedback before developing too far into it.

3) Implementation: The implementation was an on-going
and continuously improving process. Following Agile princi-
ples tasks had been assigned during fortnightly sprints. These
tasks provide guidance on how features should be developed
and integrated into the project in more easily accessible and
managed way. This proves to be an effective way to develop
a large scale project by breaking down the development into
smaller components.

XIII. CONCLUSION

This report documents the process and describe the results
of an internship at Radfords. The internship undertaken was to
develop a Hardware API Integration that allowed communica-
tion between a client, such as a grading machine and a server
maintained by Radford Software such as the FreshPackMulti.

The client and server communications were engineered with
a REST API using C# and the .NET 6 Framework. The
requirements for the TCP/IP listener were discovered through

the Agile development approach, and a working demonstration
of the software to achieve this was developed.

The learning outcomes of the internship experience included
not only the development of a real-world software as described
above but also the experience itself of being part of a larger
team in an industry specific setting.

The internship gave a valuable opportunity to put into
practice many applications of theory and knowledge that have
been attained during tertiary studies on computer science
and information technology. Overall the project has gone
very smoothly and the confidence and experience gained at
Radfords will help towards a future career in ICT.

REFERENCES

[1] University of Waikato, “Master of information technology,”
https://www.waikato.ac.nz/study/qualifications/master-of-information-
technology, accessed: 2022-9-28.

[2] W. Cunningham, “Manifesto for agile software development,”
https://agilemanifesto.org/, accessed: 2022-10-7.

[3] L. D. Lauretis, “From monolithic architecture to microservices ar-
chitecture,” in IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2019, pp. 93–96.

[4] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique
for extracting microservices from monolithic enterprise systems,” May
2016.

[5] Talend, “Monolithic vs. microservices: a guide to application archi-
tecture,” https://www.talend.com/resources/monolithic-architecture/, ac-
cessed: 2022-10-11.

[6] S. Gadge and V. Kotwani, “Microservice architecture: API gateway
considerations,” 2017.

[7] AltexSoft, “REST API: Key concepts, best practices, and benefits,”
https://www.altexsoft.com/blog/rest-api-design/, Mar. 2021, accessed:
2022-9-28.

[8] Microsoft, “Getting started with YARP,”
https://microsoft.github.io/reverse-proxy/articles/getting-started.html,
accessed: 2022-9-28.

[9] F. Zankl, “Building a fast and reliable reverse proxy with YARP,”
https://medium.com/swlh/building-a-fast-and-reliable-reverse-proxy-
with-yarp-4f70daf47300, Jan. 2021, accessed: 2022-9-28.

[10] P. D. Rasmussen, “C# httpclient - how to set the content-type header for
a request,” https://peterdaugaardrasmussen.com/2022/06/26/csharp-how-
to-set-the-content-type-header-for-a-httpclient-request/:, accessed: 2022-
9-28.

8



XIV. APPENDICES

A. Project Timeline

B. Dataflow Diagram



C. Project Description



D. Packhouse Grader


