
A browser-based roguelike game: Project Skirmish

1. Introduction

Roguelike games, taking inspiration from the 1980 title "Rogue," are recognised

for their procedural level generation and turn-based mechanics. One of the

advantages that procedural generation offers over manual level design is the

creation of a dynamic gameplay environment, which provides greater

replayability for the player (and developer) by providing a unique experience

each time.

This ongoing project known as Skirmish, started as a way to broaden my skills

and understanding of the TypeScript programming language. Initially building

from a tutorial using the Roguelike Toolkit JavaScript (ROT.js) then extending its

functionality by incorporating tile graphics and animations through the

integration of PIXI.js, a JavaScript library that supports both 2D and 3D graphics

and rendering.

The choice of TypeScript as the foundational language was driven by the

popularity of JavaScript and having a desire to learn how to create a game that

would seamlessly run in web browsers. This project has been a journey of

personal growth and continuous learning, demonstrating my commitment to

self-improvement and exploration within the world of game development – and

programming in general.

With this learning journey, I have two fundamental objectives. Firstly, I aim to

showcase my proficiency in TypeScript and game development, highlighting the

dedication I bring to personal projects. Secondly, I aspire to lay the groundwork

for potential future extensions, with consideration to open-source the code in

the future in which might help or inspire other developers

2. Project Descrip4on

JavaScript stands as one of the industry's favoured languages, primarily due to its

versatility in web development. Its reach across various browsers and dynamic

capabilities has made it one of the most popular languages of 2023. Building upon this

foundation is TypeScript, an extension of JavaScript that adds static typing. With

TypeScript, developers gain an enhanced tool that allows for more streamlined and

error-resistant coding, making it a natural choice for larger scale projects.

One of the pivotal tools aiding this project's progression is the ROT.js toolkit. Designed

explicitly for roguelike games, ROT.js acts as a catalyst, expediting the development

phase with its pre-coded features. This means developers can leap ahead to refining

gameplay, instead of getting bogged down with foundational coding.

When diving into the world of roguelike development, one quickly realizes that there's

a treasure trove of resources online. A plethora of documentation awaits the eager

developer, and platforms like GitHub offer a deep dive into practical code examples.

Notably, the 7DRL challenge, where developers craft a roguelike game in just seven

days, stands as a testament to the genre's vibrant community and the shared drive to

innovate.

But what's a game without its aesthetics? Traditional roguelikes, while nostalgic with

their ASCII graphics, can often feel limited in visual appeal. By introducing tile-based

graphics and animations, the gameplay transforms. The visuals become richer, and the

player's experience is elevated, merging the classic with the contemporary.

Lastly, in this pursuit of graphical enhancement, the PIXI.js library emerges as the

frontrunner for TypeScript. It's not just about rendering graphics; it's about doing so

efficiently and beautifully. PIXI.js offers the perfect blend of performance and

versatility, making it the top choice for this project.

3. Technologies Used

This project came together with careful deliberaWon on which tools and technologies to use. Some of

these technologies include:

1. Typescript

TypeScript is a superset of JavaScript created by MicrosoZ in 2012. Developed by Anders

Hejlsberg, its purpose is to address challenges in large-scale JavaScript applicaWons by adding

opWonal staWc types. This helps catch errors early in development. While enhancing

JavaScript, TypeScript compiles down to it, ensuring wide compaWbility and introducing

features from recent ECMAScript standards.

2. Vite

Vite is a next-generaWon frontend tooling soluWon introduced by Evan You, the creator of

Vue.js, in early 2020. Designed to improve the developer experience, Vite provides rapid

cold-server starts and blazing-fast hot module replacement (HMR). Unlike tradiWonal

bundlers, Vite serves code over naWve ES modules, making it faster and more efficient. As it

has grown in popularity, Vite has expanded its support beyond Vue, accommodaWng

frameworks like React, Preact, and Svelte, and has become a go-to choice for developers

looking for an opWmized and modern build setup.

3. ROT.js

ROT.js is a library specifically designed for the creaWon of roguelike games in the browser.

Developed by Ondřej Žár, ROT.js seeks to provide modern developers with tools to create

games in this genre. ROT.js offers a wide array of features criWcal for roguelike development,

such as map generaWon, pathfinding, and more. It simplifies the process of creaWng these

games by providing pre-built modules that would otherwise take a considerable amount of

Wme to code from scratch.

4. ROT.js Tutorial

The ROT.js tutorial by Nick Klepinger guides learners through creaWng a roguelike game using

ROT.js, TypeScript, and ViteJS. It covers topics such as seing up a playable character, map

generaWon, dungeon creaWon, enemy interacWon, UI development, inventory management,

among other things

5. PIXI.js

PIXI.js is a rendering engine that allows for the creaWon of visually rich interacWve graphics

and animaWons in the browser. It was created by Mat Groves and introduced around 2013.

PIXI.js is renowned for its fast performance and flexibility. It's hardware-accelerated with

WebGL, making it suitable for creaWng complex graphics, including games. However, it's also

capable of falling back to HTML5's canvas if needed, ensuring broad compaWbility.

Developers oZen choose PIXI.js for its ability to handle 2D graphics efficiently and its user-

friendly API.

6. Codeanywhere

Founded in 2013, Codeanywhere started as a cloud-based code editor that aimed to provide

developers a plamorm to write, edit, and collaborate on code from any device with an

internet connecWon. Codeanywhere offers an integrated development environment (IDE) in

the cloud. Developers can access their projects and code from anywhere, whether on a

desktop, tablet, or even a mobile phone. Features include collaboraWon tools, where

mulWple users can code in real-Wme, similar to how one might collaborate on a Google Doc.

The plamorm supports mulWple programming languages and offers features like code

compleWon, error checking, and more. It's parWcularly popular among developers who

require a versaWle coding environment, especially when collaboraWng with teams distributed

across different locaWons.

7. Itch.io and IknowKingRabbit

The graphics used in this project were created by Aleksandr Makarov aka IKnowKingRabbit,

who provides the assets to be used, while these graphics are not free (something that would

need to be changed if I decide to release the code as open source), they are licensed to be

used freely for both commercial and non-commercial purposes. The graphics themselves

were purchased off itch.io.

itch.io was established in 2013 by Leaf Corcoran, providing an accessible plamorm for indie

game developers to distribute, sell, and showcase their games and creaWve content. Beyond

just games, it has become a valuable resource for game art assets, offering a diverse range of

graphics, sprites, textures, and other design elements that developers can use to enhance

their projects, with flexible pricing opWons including pay-what-you-want, which encourages

the sharing and accessibility of creaWve resources within the indie game development

community.

4. Beyond the Tutorial: Custom Enhancements

Rendering with PIXI.JS

The approach taken to include PIXI.js in the project involved following along the

documentation from the PIXI.JS website to learn how to do it. With PIXI.js everything

gets rendered in a PIXI.Application and this is instantiated in the main.ts class like so:

(Fig.1, crea-ng a new PIXI.Applica-on)

https://itch.io/profile/iknowkingrabbit

With the PIXI.Application defined as app (Fig.1) it can then be passed through as a

parameter to the the rest of the classes within the program.

In the game-map.ts class, exists the render method, which is used to draw the ASCII

characters to the screen using the functions from the ROT.js library. The proceduarally

generated tiles, stored in an array for the map is then drawn to the screen which has

been well explained within Nick Klepinger ’s guide. It is within this class that the

rendering happens Using the PIXI.js library.

A new class was created; sprite-manager.ts which defines the tilesetData along with

textures that are parsed and loaded into memory. This sprite-manager class also

contains a defined stage or PIXI.Container named as camera, which is used to render

all of the tile and sprite animations onto the display. A camera container is used

because unlike the movement in the original tutorial, in my implementation I have

decided to go with a centered camera viewport.

With an instance of the sprite-manager it can be passed throughout the application as

needed whenever graphic rendering needs to happen. In this case on the game-map.ts

class within the render method, at the location where text from the ROT.js would

normally draw ASCII characters on screen, PIXI.js functions are used to instead render

sprites and animations to the screen. Because the tilesize of the sprites used for this

project are 16x16 pixels a conversion from the font-sized point based system of the

game-map needed to be done to correctly render the tiles on screen. One example of

how this conversion works is in the code showcased below for centering the camera

container to the player on screen.

Extending the procedural generaFon

The second major enhancement was adding extra tile types to the procedural

generation for the game-map. This included:

• the addiWon of corner Wles for the rectangular rooms

• A door Wle that would randomly be assigned to passageways that connect rooms

• Furnishing Wles, such as bookcases, tables and braziers

5. Implementa4on

Centering the view on the player

(Fig.2, reposi-oning the camera to center on the player)

The approach decided for this was to render all the textures and sprites on their own

PIXI.Container (camera) that the x and y location of the camera would be set by

subtracting the calculated offset based on the players location.

Demonstrated above (Fig.2), firstly we can see the constants have been declared, such

as the tilesize and scale. In addition to the rendering of the map, a mask has also been

applied in this case to limit the viewable area of the rendered graphics. This is to

account for areas on the screen where UI are present and which we do not want to

display any rendered graphics.

Adding addiFonal Fle types to the map generaFon

(Fig.3, crea-ng new -le-types)

The model that configured the tile-types was extended to include the new tiles as

shown above (Fig.3). Once the models were defined they can be brought through to

the procgen.ts class. In here the methods could be expanded to include the new tiles.

(Fig.4, The buildRoom method)

For example (Fig.4), the buildRoom method was expanded to draw tiles in each of the

four corners, in addition to this, as long as it is not the firstRoom (the room that the

player starts in) then it will also call the placeBookcases(), placeTables() and the

placeBraziers() methods.

placeTables

(Fig.5, the placeTables method)

placeTables (Fig.5) populates a grid’s central 50% area with 1-6 tables, ensuring no

overlaps with existing entities.

Detailed Breakdown

1. Middle Region Calcula1on: Determines the size and starWng point of the middle region.

2. Random Table Count: Generates a random number of tables to place.

3. Table Placement Loop: Iterates through each table, generaWng random coordinates within

the middle region.

4. Occupancy Check and Placement: Checks if the Wle is a 'floor' Wle before placement, retrying

if occupied.

Summary

This method offers a concise and effective approach to randomly placing tables,

promoting a balanced distribution while avoiding entity overlap.

placeBookcases

(Fig.6, placeBookcases method)

placeBookcases, (Fig.6) places 1-10 bookcases on 'floor' tiles adjacent to walls within a

grid, avoiding overlap with existing entities.

Detailed Breakdown

1. Random Bookcase Count: Determines how many bookcases to place, ranging

from 1 to 10.

2. Adjacency Check: isAdjacentToWall(x, y): Checks if a given tile is next to a wall.

3. Bookcase Placement Loop: Iterates through the number of bookcases to be

placed, generating coordinates within valid grid bounds.

4. Placement Validation and Execution: Checks if the tile is a 'floor' tile and

adjacent to a wall before placing a bookcase, retrying if conditions are not met.

Summary

The method ensures bookcases are only placed next to walls, maintaining game

aesthetics and design rules,

placeBraziers

(Fig.7, placeBraziers method)

placeBraziers (Fig.7) attempts to place braziers at each corner of a room, adhering to

specific conditions for placement.

Detailed Breakdown

1. Corner Calculation: Determines the four corners of the room.

2. Brazier Placement Loop: Iterates through each corner, attempting to place a

brazier.

3. Placement Conditions: Checks for a 60% chance, valid position, and absence of

a bookcase before placement.

4. Position Validation: isPositionValidForBrazier(x, y): Ensures the position is

within the room and on a 'floor' tile.

5. Bookcase Check: isBookcasePresent(x, y): Verifies there’s no bookcase at the

specified position.

Summary

This method enhances room aesthetics with potential brazier placement at corners,

ensuring no conflicts with bookcases or invalid positions.

6. Conclusion

At the completion of this first phase of the Skirmish project, a proof-of-concept alpha

version of the roguelike game has been produced. The integration of TypeScript,

ROT.js, and PIXI.js has proven to be a synergistic choice, bringing together the

robustness of static typing, the efficiency of roguelike-specific functionalities, and the

visual flair of advanced rendering.

This journey has not only expanded my proficiency in TypeScript and game

development but has also opened doors for future enhancements and iterations. The

procedural generation enhancements and the graphical upgrades are testament to the

project ’s potential for growth and depth. The custom enhancements made beyond the

tutorial have imbued the game with a unique identity, setting the stage for further

exploration and innovation.

As an ongoing project, Skirmish stands as a living, evolving entity. The current state,

while functional and visually engaging, is merely the first step in a longer journey of

development and learning. Future iterations will undoubtedly see more features,

optimizations, and refinements, as the project continues to mature and evolve.

This documentation serves not just as a record of progress and a guide for future

development, but also as a showcase of commitment, technical skill, and a passion for

game development. It reflects a dedication to learning, a willingness to tackle

challenges, and a drive to create engaging, dynamic gameplay experiences.

Skirmish, in its current form, is a solid stepping stone towards mastering the

intricacies of game development, and a promising glimpse into the potential future of

this roguelike adventure.

Appendix

A typical ASCII character level, from the ROT.js tutorial, before the Skirmish Project.

AUer Skrimish Proejct using sprite graphics and textures.

